INTRODUCTION. Diesing (1992) and Chierchia (1995) account for the distribution of generic/existential readings of bare plural subjects (henceforth: BPSs) of individual-level predicates (henceforth: i-predicates) by means of constraints on subjects reconstruction. I argue that these constraints are incompatible with recent proposals about negation, VP-ellipsis, VP-conjunction and object QR. I suggest in alternative a semantically based approach. Here are some of the problems with the reconstruction based approach.

NEGATION. BPSs of transitive and unergative i-predicates admit only the generic reading; see (1). Both Diesing and Chierchia account for this fact by preventing subjects of transitive and unergative i-predicates from lowering into the nuclear scope of the generic operator. Here is a problem for this account. On the one hand, Johnson and Tamioka (1997) suggest that subjects may be lowered at least to a position c-commanded by NegP; their argument works no matter whether the VP c-commanded by NegP is projected by an i-predicate or not. On the other hand, in order to derive the intended truth-conditions of (2), NegP must sit inside the nuclear scope of the generic operator. Hence, subjects may be lowered inside the nuclear scope of the generic operator.

VP-ELLIPSIS. BPSs of unaccusative and passive i-predicates admit the existential reading; see (3). Both Diesing and Chierchia account for this fact by allowing subjects of unaccusative and passive i-predicates to lower into VP. Here is a problem for this account. The BPSs in (4) admit the existential reading as much those in (3) but reconstruction into VP of the BPS in (4) is impossible, since the only possible antecedent of the VP-ellipsis would end up containing the ellipsis itself and the resolution of the ellipsis would therefore be impossible.

VP-CONJUNCTION. In order to prevent subjects of i-predicates from lowering inside VP, Diesing suggests that they must be base generated in [Spec, IP], both in German and in English. Here is a problem for this claim. Johnson (1996; 2000) and Lin (2000; 2001) suggest that the constrast in the minimal pairs (5) and (6) is due to the fact that (5a) and (6a) involve VP-coordination while (5b) and (6b) involve TP-coordination. Hence, subjects of the second conjunct in (5a) and (6a) sit in [Spec, VP]. According to Diesing, it should therefore be impossible to replace the predicates of the second conjunct in (5a) and (6a) by i-predicates, since subjects of i-predicates must be base generated in [Spec, IP]. The grammaticality of sentences (7) shows that this prediction is not borne out.

CONCLUSIONS. Diesing and Chierchia suggest that unavailable existential readings of BPSs of i-predicates share a syntactic property: they correspond to LFs where subjects have undergone a forbidden reconstruction. The arguments above argue against this strategy: constraints on reconstruction are orthogonal to the distribution of generic/existential-readings. Following Chierchia, let’s assume that i-predicates have a davidsonian argument on situations bounded by the generic operator, yielding truth-conditions of the form (8). I suggest that unavailable existential readings of BPSs of i-predicates share a semantic property: they correspond to formulas (8) in which the restrictive clause RC characterizes a set of situations which is “too small” with respect to the nuclear scope NS, in the sense that it is presupposed that there is a situation s such that RC(x₁, ..., xₙ, s) = 0 but NS(x₁, ..., xₙ, s) = 1; let me illustrate with an example. The existential reading of sentence (1b) would correspond to truth-conditions (9), which say that for every situation s in which John might be located, there is an italian who loves John in s. Suppose that indeed (9) is true: then there is at least an italian who loves John; that italian is presupposed to love John also in a situation ˜s where John might not be located; therefore RC(˜s) ≡ in(j, ˜s) = 0 but NS(˜s) ≡ ∃x[[italian](x) ∧ [love](˜s, x, j)] = 1.
Examples.

(1)
 a. Italians are tall.
 = every prototypical italian is tall / \neq there are italians who are tall.
 b. Italians love John.
 = every prototypical italian loves John. / \neq there are italians who love John.

(2) Italians don’t love John.
 = Gen_x [x is italian] \neg (x loves John).

(3)
 a. Ponds belong to this property.
 = there are ponds which belong to this property.
 b. Counterexamples are known to me.
 = there are counterexamples that are known to me.

(4)
 a. Ponds which shouldn’t \emptyset V_P (nonetheless) belong to this property.
 \left[IP [V_P are known [counterexamples which shouldn’t \emptyset V_P] to me] \right].
 b. Counterexamples which shouldn’t \emptyset V_P, are (nonetheless) known to me.
 \left[IP [V_P belong [ponds which shouldn’t \emptyset V_P] to this property]] \right].

(5)
 a. Not every girl _i ate a green banana, and her _i mother a ripe one.
 b. *Not every girl _i ate a green banana, and her _i mother ate a ripe one.

(6)
 a. Kim didn’t play bingo or Sandy sit at home all night.
 = \neg (Kim play bingo) \land \neg (Sandy sit at home).
 b. Kim didn’t play bingo or Sandy didn’t sit at home all night.
 = \neg (Kim play bingo) \lor \neg (Sandy sit at home).

(7)
 a. Not every girl _i loves an old man, and her _i mother a young one.
 b. Kim doesn’t love Mary or Sandy love John.
 = \neg (Kim loves Mary) \land \neg (Sandy loves John).

(8) Gen_{x_1, \ldots, x_n, s} [RC(x_1, \ldots, x_n, s)] [NS(x_1, \ldots, x_n, s)].

(9) Gen_s [in(j, s)] [\exists x [[italian]](x) \land [love](s, x, j)].

References.

Diesing M. (1992); Indefinites; Linguistic Inquiry Monograph 20; The MIT Press; Cambridge, MA.

Johnson, K. (1996); “In search of the English Middle Field”; ms. UMass, Amherst.

Lin, V. (2000); “Determiner Sharing”; in: R. Billerey & B. D. Lillehaugen (eds.); Proceedings of the 19th West Coast Conference on Formal Linguistics; Cascadilla Press; Sommerville MA.

Lin, V. (2001); “A way to undo A-movement”; in: K. Megerdoomian & L. A. Barel (eds.); Proceedings of the 20th West Coast Conference on Formal Linguistics; Cascadilla Press; Sommerville MA.