1. Puzzles

(1) a. ATB reconstruction is blocked in the configuration given in (1b).
 b. YP₁ [[x' t₁]] & [x' t₂]]

<<Case 1: QP&QP interaction >>

(2) A guard is [v₁p standing in front of every church] and [v₁p sitting at the side of every mosque].
 (every > a) (Fox 2000:59)

(3) #A guard [v₁p is standing in front of every church] and [v₁p is sitting at the side of every mosque].
 (*every > a)

Assumptions on inverse scope

(4) The subject undergoes reconstruction into the position where it is c-commanded by the moved object. (Hornstein (1995)/Johnson and Tomioka (1997))

Inverse scope of the objects in (2):

(5) a. [TP A guard₂ [is[v₁p every church₁ [v₁p t₂ standing in front of t₁]]
 and [v₁p every mosque₃ [v₁p t₂ sitting at the side of t₃]]]]

Inverse scope of the objects in (3): --- > unavailable

b. [TP A guard₂ [is[v₁p every church₁ [v₁p t₂ standing in front of t₁]]
 and [is[v₁p every mosque₃ [v₁p t₂ sitting at the side of t₃]]]]]
QR in each conjunct in X'-coordination:
(6) a. Mary \[\Presp\ T \text{ has draped a (different) sheet over every armchair} \] and \\
\[\Presp\ T \text{ has put a (different) cup on every table}. \] (every>a)

\[\Downarrow \]

\[QR \]

b. Mary \[\Presp\ T \text{ has \[\Presp\ vP draped a (different) sheet over every \textbf{armchair} \]} \] \\
and \[\Presp\ T \text{ has \[\Presp\ vP put a (different) cup on every \textbf{table} \]} \].

\[\Uparrow \]

\[QR \]

A similar contrast to (2-3):
(7) a. A girl has \[\Presp\ vP hugged every dog \] and \[\Presp\ vP kissed every cat\]. (every>a, a>every)

b. #A girl \[\Presp\ T \text{ has hugged every dog} \] and \[\Presp\ T \text{ has kissed every cat} \]. (*every>a, a>every)

<<Case 2: QP&Neg interaction>>
(8) a. Everyone didn't eat sushi.

b. Everyone \[\Presp\ T \text{ didn't eat sushi} \] and \[\Presp\ T \text{ didn't drink sake} \].

(Neg>every, every>Neg)

(*Neg>every, every>Neg)

Narrow scope of everyone
(9) a. Everyone\textsubscript{1} didn't \[\Presp\ vP t\textsubscript{1} eat sushi \]. (=9a)

\[\underline{\downarrow} \]

b. Everyone\textsubscript{1} \[\Presp\ T \text{ didn't t\textsubscript{1} eat sushi} \] and \[\Presp\ T \text{ didn't t\textsubscript{1} drink sake} \]. (=9b)

<<Case 3: Wh&QP interaction>>
(10) How many books\textsubscript{1} did \[\Presp\ TP \text{ every student like t\textsubscript{1}} \] and \[\Presp\ TP \text{ every professor dislike t\textsubscript{1}} \]?

(how many> every, every>how many) (Moltmann 1992:137)

(11) a. Seven books (how many> every)

b. Student A liked 7 books and Prof. B disliked 2 books, Student C liked 9 books and Prof. D disliked 4 books. (every>how many)

“Every> how many” reading
(12) How many books\textsubscript{1} did \[\Presp\ TP \text{ every student like t\textsubscript{1}} \] and \[\Presp\ TP \text{ every professor dislike t\textsubscript{1}} \]?

(13) a. How many books\textsubscript{1} \[\Presp\ C \text{ did every student like t\textsubscript{1}} \] and \[\Presp\ C \text{ did every professor dislike t\textsubscript{1}} \]?

(b) Seven books (how many> every)

c. *Student A liked 7 books and Prof. B disliked 2 books, Student C liked 9 books and Prof. D disliked 4 books. (every>how many)
2. A closer look at coordinate structure

Multi-dominance approach

(14) \[\begin{array}{c}
\alpha \\
\beta \\
\gamma \\
K & L
\end{array} \]

(cf. Williams (1978), Goodall (1987), Wilder (1999), Citko (2003), among others)

The structure given in (14) raises a problem concerning linearization. Under Kayne’s (1994) Linear Correspondence Axiom (LCA), which derives linear order from asymmetric c-command, no order between \(\alpha \), \(\beta \), and \(\gamma \) is established in (14). Citko (2003) solves this problem by assuming, following Chomsky (1995), among others, that the LCA applies only at the level relevant for linearization. Thus, the structure (14) is allowed as long as \(\beta \) is irrelevant to linearization. One of the ways to make \(\beta \) irrelevant for linearization is to move \(\beta \) overtly.

(16) I wonder what John will recommend and Mary will read.

(17) a. VP VP
read what recommend

b. CP
what C’

\[\begin{array}{c}
C & \&P \\
\& \\
\& \\
\& \\
TP \\
\& \\
\& \\
\& \\
\& \\
TP \rightarrow 1^{st} CONJUNCT \\
T \rightarrow TP \rightarrow 1^{st} CONJUNCT
\end{array} \]

(Citko 2003)
Derivation of (3):
(18) a. #A guard [T is standing in front of every church] and [T is sitting at the side of every mosque]. (=3)

b. A guard [T v P is standing in front of every church] and [T v P is sitting at the side of every mosque].

Derivation of (2):
(19) a. A guard is [v P standing in front of every church] and [v P sitting at the side of every mosque]. (=2)

b. A guard [T v P v P is standing in front of every church] and [T v P v P is sitting at the side of every mosque].

(20) a. I wonder who, John didn’t talk with t₁ and didn’t take a picture of t₁ at the party.

b. Mary, John didn’t talk with t₁ and didn’t take a picture of t₁ at the party.
a. I wonder \[
[\text{CP who}_1 \text{ &P John}_2 [\text{TP t}_2 \text{ didn’t talk with t}_1]] \]
and [[\text{TP t}_2 \text{ didn’t take a picture of t}_1 \text{ at the party}]]].

b. \[
[\text{TopP Mary}_1, \text{ &P John}_2 [\text{TP t}_2 \text{ didn’t talk with t}_1]] \]
and [[\text{TP t}_2 \text{ didn’t take a picture of t}_1 \text{ at the party}]]].

Proposal:

(22) a. ATB Movement to the second specifier of &P is driven only by the EPP-feature.
 b. It takes place in the narrow syntax, but is not PF-movement.

(cf. Sauerland and Elbourne 2000)

Nevins and Anand’s (2003) generalization

(23) If the only feature-checking relation a probe and goal G stand in is EPP, then G cannot
reconstruct. (Nevins and Anand 2003:102)

(24) a. Kisii šaayer-ne har ghazal likbii.
 ‘Some poet-Erg every song-Nom write.f-Perf
 Some poet wrote every song.’ (some>every, *every>some)
 b. koi šaayer har ghazal likbtaa hai.
 some poet-Nom every song-Acc write.m-Impf be-pres
 ‘Some poet writes every song.’ (some>every, every>some)

(Nevins and Anand 2003:102)

3. Some empirical consequences

<<Apparent counterexample>>

(25) a. A girl hugged every dog. (every>a, a>every)
 b. A girl [hugged every dog] and [kissed every cat]. (*every>a, a>every)

If (25b) had \(vP\)-coordination,

(26) \[
[\text{TP A girl}_2 [T[\text{[vP every dog}_1 \text{ [vP t}_2 \text{ hugged t}_1]]] \text{ and } [\text{[vP every cat}_1 \text{ [vP t}_2 \text{ kissed t}_1]]]]]
\]

------- > Prediction: “every>a” reading is possible.
------- > In what follows, I will argue that (25b) has TP coordination.
Assumptions on verbal morphology in English

(27) a. *Have and be are fully inflected in the lexicon while all other English verbs are bare.
 b. *Have and be undergo movement to T in order to check inflectional features of T in
 (28a) while all other verbs undergo PF-merger with a verbal affix which is base-generated under T in (28b). (Lasnik 1995, cf. Chomsky 1957)

(28) a. [John has [left]].
 _V-raising
 b. [John Taffix [like Mary]].
 _PF-merger

(29) a. John slept, and Mary will too. (Quirk et al. 1972)
 b. John Inf[sleep], and Mary will [sleep] too.

(30) a. *John was here, and Mary will too. (Warner 1986)
 b. *John [was here], and Mary will [be here] too.

Returning to (25b),

(31) a. A girl hugged every dog and kissed every cat. ((=25b))
 b. [&P A girl1 [[TP t1 [T' ed [vP t1 hug every dog]]] and [TP t1 [T' ed [vP t1 kiss every cat]]]]].
 _Movement for linearization

Scope of Manner adverb ---> only the first conjunct

(32) a. Ellen partially solved the problem and wrote up her findings.
 b. Algernon incorrectly/stupidly answered the question and solved the problem.
 c. The little boy carelessly drank up and walked away.
 d. Peter partially understood and undressed. (Bošković and Franks 2000:117)

Yes-no question of (25b)

(33) Did a girl [hug every dog] and [kiss every cat]? (every>a, a>every)

(34) [CP Did2 [TP a girl1 t2 [&P t1 hug every dog] and [vP t1 kiss every cat]]]}
 _Movement to [Spec, TP]

T-to-C movement
4. Residual issues

(35) *John criticized Mary and Susan criticized.

(=John criticized Mary and Susan criticized John.)

Derivation of (36):

(36)

\[\text{&P} \]

\[\text{&'} \]

\[\text{&} \]

\[\text{TP} \]

Susan

T'

T

\[\text{vP} \]

Susan

v'

VP

v

[\(\text{P} \)]

T'

John

\[\text{T} \]

\[\text{vP} \]

\[\text{[\(\Phi \)]} \]

\[\text{[\(\Phi \)]} \]

\[\Phi \]

\[\text{[\(\Phi \)]} \]

\[\text{[EPP]} \]

\[\text{[Case]} \]

\[\text{VP} \]

v

Mary

V

(37) A goal undergoes *Agree* with more than one probe simultaneously only when the probes have the same set of uninterpretable features.

(38) Prediction: If \(v \) also has the EPP-feature as well as \(\Phi \)-features, then \(v \) and finite \(T \) can undergo *Agree* with a single goal simultaneously.

(39) the boy \([\text{CP} \text{who}_1 \text{C} [\text{TP} t_1 \text{frightened Mary}] \text{and} [\text{TP} \text{she hit } t_1]] \)

(Franks 1995:76)
Derivation of (39):

(40) \[CP \]

\[
\begin{array}{c}
\text{who} \\
\text{C} \\
&\text{&P} \\
&\&' \\
&\& \text{TP} \\
\text{&} \\
\text{she} \\
\text{T'} \\
\text{T} \\
\text{vP} \\
\text{TP} \\
\text{vP} \\
\text{she} \\
\text{v'} \\
\text{TP} \\
\text{v} \\
\text{VP} \\
\text{vP} \\
\text{T} \\
\text{[Φ]} \\
\text{[EPP]} \\
\text{V} \\
\end{array}
\]

Still problematic

(41) *I know a man [CP who C TP Bill saw t1] and [TP t1 likes Mary]. (Williams 1978:34)

5. Summary

(42) a. Some instances of ATB movement involve movement triggered only by the EPP feature.

b. The relevant anti-reconstruction effects of ATB movement fall under Nevins and Anand’s (2003) generalization that movement triggered only by the EPP feature does not allow reconstruction.

References

